
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)  

e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 5 Ver. III (Sep - Oct 2016), PP 92-96 

www.iosrjournals.org 

DOI: 10.9790/1676-1105039296                                           www.iosrjournals.org                                   92 | Page 

 

Akpan’s Algorithm to Determine State Transition Matrix and 

Solution to Differential Equations with Mixed Initial and 

Boundary Conditions 
 

Akpan, E. A. 
Department of Electrical/Electronic/Computer Engineering, University of UYO, Uyo, Nigeria 

 

Abstract: Solving a system of linear constant coefficient differential equations with mixed initial and boundary 

values without the use of a computer is not a trivial endeavor if the order of the system is higher than two. This 

article delineates algorithms for computing the state transition matrix (STM) and the solution of systems of 

constant coefficient linear differential equations of any order. These algorithms obviate the shortcomings 

inherent in Leverrier’s algorithm, Sylvester’s expansion theorem, Cayley-Hamilton’s theorem, and Putzer’s 

algorithm. Furthermore, these algorithms do not require symbolic software since the STM and differential 

equation solution can be computed using regular Matlab or C++. 
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I. Introduction 

A model of a system of constant coefficient linear ordinary differential equations is given as 

(t)(t) Axx 
              (1) 

with initial condition 0)( 00  xtx , where, (t)x  is a column vector with n-entries and each entry is a real 

number; and A  is a constant nn  matrix with real or complex entries. In this article the state transition matrix 

(STM) is denoted by )(t . Since the STM is an important intermediate result in the solution of eqn. (1), 

several researchers have proposed algorithms and theorems to compute the STM. Notable among them are the 

Leverrier’s algorithm [1], Sylvester’s theorem [2], Cayley-Hamilton’s theorem [3], and Putzer’s algorithm [4].  

In Leverrier’s algorithm, a resolvent matrix )(s  is found for eqn. (1), expressed as  

1)()(  AsIs           (2) 

Then the STM of the system is the inverse Laplace transform of )(s . If n is large, taking the inverse Laplace 

transform of )(s
 requires symbolic software. Thus, the Leverrier’s algorithm does not yield the STM 

directly. 

Sylvester’s expansion theorem can be used to compute the STM for the case where the matrix A  has distinct 

eigenvalues as follows.  
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where, i , ni ,...,2,1 , are the eigenvalues of  the matrix A, and  
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While iF  can be computed numerically, this algorithm is numerically unstable because it involves division by 

the difference of eigenvalues which may approach zero in some cases.  

Cayley-Hamilton’s theorem can be adapted to find the STM for the case of real and distinct eigenvalues. In this 

case the system of equations to solve for the vector ))()()(()( 21 tttt n   is: 
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The drawback of this approach is that finding   is not amenable to numerical method. 

Finally, the Putzer algorithm can be used to determine the STM even for the case of repeated eigenvalues as 

follows.   
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The vector ))()()(()( 21 trtrtrtr n  is a solution of a separate system of ordinary differential 

equations from eqn. (1); and )(tr  is found manually or by using software capable of symbolic manipulations.  

Eddie Akpan’s algorithm, introduced in this article, is easily implemented by simple computer programs in 

Matlab, C++, and other computing software; and does not have the drawbacks inherent in the other algorithms, 

such as numerical instability and a need to possess expensive symbolic software.  

This article is organized as follows: Algorithms for computing the state transition matrix for initial and mixed 

initial and boundary value problems are given in section 2. An algorithm for computing the solution of systems 

of differential equations as a function of eigenvalue exponentials is given in section 3. An example that 

demonstrates the application of the proposed algorithms appears in section 4. Section 5 is the conclusion.       

 

1.1 Eddie Akpan’s Algorithm for Finding the State Transition Matrix for Initial Value Problems 

Let )(t
 denote the state transition matrix (STM) of the autonomous linear system given in eqn. (1). 

Suppose the matrix A has distinct real or complex eigenvalues 1 , 2 , …, n . Define a vector of eigenvalues 

exponential as 

 Tttt neeetE


 21)(  .  

Further, let  P  be the matrix whose columns are the eigenvectors of A. Additionally, let the vector       
 jkm , 

for fixed j and k, be given as
 

 1 ikjijk PPm  , ni ,...,2,1          (6) 

and, 
 
 jkmM   , nkj ,...,2,1,  .   

 
 

Then Eddie Akpan’s formula for computing the STM is given 

 

as 

 )()( tEmt jk   , nkj ,...,2,1,  .        (7) 

Taking )(tE  outside the bracket on the right hand side of eqn. (7), the state transition matrix is written as  

)()( tEMt                (8) 

where, the symbol ""
 
 implies element-by-element dot product of  jkm   (the entries of M) with )(tE . 

 

1.2 Eddie Akpan’s Algorithm for Determining the State Transition Matrix for Mixed Initial and 

Boundary Value Problems 

In some applications, such as optimization problems, the optimal solutions can occur at the boundaries 

of the domain of solutions. When this happens, methods of solution of initial value problems are inadequate 

because mixed initial and boundary values are involved. These types of problems necessitate the use of 

Lagrange multipliers [2]. Consequently, for an n
th

-order system, the size of the system of equations to solve is 

nq 2 .  

Let (t)x  be the n-dimensional state vector for the system in eqn. (1), and (t)z  is a vector of Lagrange 

multipliers with the same dimension as (t)x . Then the system with mixed initial and boundary conditions is 

written as 
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with the accompanying initial and boundary conditions 0)( 00  xtx
 
and 0)(  ff xtx , respectively.  

The matrices 1A  and 2A  are constant nn  matrices with real or complex entries; and the matrices 1C  and 

2C  are coupling terms. Let 
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Then the system of equations with mixed initial and boundary conditions is given by 

 

 )()( tAt                 (10)  

In eqn. (10) the size of the A-matrix is  qq . The STM for this case is 

 

 
 )()( tEmt jk   , qkj ,...,2,1,         

 (11) where,  

 1 ikjijk PPm  , qi ,...,2,1
,         (12)

 

and  Tttt qeeetE


 21)(  .  

 

Eddie Akpan’s Algorithm for Determining the Solution of Systems of Linear Differential Equations with 

Initial and Mixed Initial and Boundary Values
 

Let a vector C be given as  

 TiCC )(
           (13)

 

where, for initial value problems, ni ,...,2,1 , and for mixed initial and boundary value problems, 

qi ,...,2,1 . For the initial value problem eqn. (1), the solution of the system of equations is given by 

 

Cttx )()(             (14) 

 

The vector C is a function of initial conditions, and satisfies  
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0 txtC            (15) 

 

If 00 t ,         

0)()( xttx             (16) 

 

For mixed initial and boundary value problems, )(t  is a qq matrix, and 0t  and ft , respectively, represent 

the initial and final time. In that case, let )(
~

t  denote the first n-rows of )(t . The vector C satisfies 
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Then the solution of (10) is  

 

Ctt )()(             (18)

  

with the vector C given by eqn. (17). 
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Although the solutions of eqns. (1) and (10) can be written in the form of eqns. (14) and (18), it is preferable to 

express )(tx  andr )(t  succinctly as functions of the eigenvalues exponential [5]. Eddie Akpan’s formula for 

the solution of systems of constant coefficient linear ordinary differential equations is as follows: 

For fixed j and k, let  

)()(
1

kmiCw
q

i

jijk 


             (19) 

where, jim  is given as eqn. (6) or (12), and C  is specified as eqn. (15) or (17). Also, let     

  jkwW  ,  qkj ,...,2,1, 
         (20)

 

Then, )(t , or )(tx
 
in the case of initial value problems, is   

 

 (t)(t)  EW                          

  (21) 

 

Demonstration Example for a Mixed Initial and Boundary Values Problem
 

For an example that demonstrates the application of the algorithms enumerated in this article, consider 

a scalar system given in [2]: 

 

)(5.0(t)(t) tz xx            (22) 

 

The initial and boundary values are 1)0( x  and 0)1( x , respectively. The variable )(tz  is a Lagrange 

multiplier having the dynamics    

 )((t)2(t) tzz  x           (23) 

Hence, the system of equations to solve is: 

 

)(
12

5.01
)( tt  












            (24) 

The eigenvalues of the A-matrrix are 2 . Therefore, 

 Ttt eetE 22)(                          (25) 
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. 

 jkmM   , j, k = 1,2; so  by eqn. (6), 8536.01084.17701.0)1(11 m ,   and

1464.07221.02028.0)2(11 m , thus,  1464.08536.011 m ; and 12m , 21m  and 22m  are 

computed similarly. Hence, 
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The STM is: 
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Using the initial and boundary conditions, 
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By eqn. (19), 0632.1)1()2()1()1( 121111  mCmCw ; 12w , 21w  and 22w  are computed similarly. 

Consequently, 
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II. Conclusion 
Efficient algorithms for computing the state transition matrix (STM) and solution of systems of 

constant coefficient linear differential equations with initial or mixed initial and boundary values have been 

presented. The STM algorithm utilizes the eigenvalues and eigenvectors of the system; and does not have the 

numerical instability problem or need for symbolic software which is the case with existing algorithms, such as 

the Leverrier’s algorithm, Sylvester’s expansion theorem, Cayley-Hamilton’s theorem, and Putzer’s algorithm. 

The solution of the systems of equations is expressed in terms of the eigenvalues exponential. These algorithms 

can be implemented using regular computing software such as Matlab or C++. Finally, a mixed initial and 

boundary value example that highlights the use of these algorithms has been exhibited. 
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